
Lecture 1:

Object Oriented

Programming

Muhammad Hafeez Javed

www.rmhjaved.com

http://www.rmhjaved.com/

Procedural vs. Object-Oriented

Programming

 The unit in procedural programming is function, and

unit in object-oriented programming is class

 Procedural programming concentrates on creating

functions, while object-oriented programming starts

from isolating the classes, and then look for the

methods inside them.

 Procedural programming separates the data of the

program from the operations that manipulate the

data, while object-oriented programming focus on

both of them

figure1: procedural figure2: object-oriented

Concept of Class and

Object

 “Class” refers to a blueprint. It

defines the variables and methods

the objects support

 “Object” is an instance of a class.

Each object has a class which

defines its data and behavior

Class Members

 A class can have three kinds of members:

 fields: data variables which determine the

status of the class or an object

 methods: executable code of the class built

from statements. It allows us to

manipulate/change the status of an object or

access the value of the data member

 nested classes and nested interfaces

Sample class

class Pencil {

public String color = “red”;

public int length;

public float diameter;

public static long nextID = 0;

public void setColor (String newColor) {

color = newColor;

}

}

Fields – Declaration

 Field Declaration

 a type name followed by the field name, and

optionally an initialization clause

 primitive data type vs. Object reference

 boolean, char, byte, short, int, long, float, double

More about field modifiers

 Access control modifiers

 private: private members are accessible only in
the class itself

 package: package members are accessible in
classes in the same package and the class itself

 protected: protected members are accessible
in classes in the same package, in subclasses of
the class, and in the class itself

 public: public members are accessible
anywhere the class is accessible

public class Pencil {

public String color = “red”;

public int length;

public float diameter;

private float price;

public static long nextID = 0;

public void setPrice (float newPrice) {

price = newPrice;

}

}

public class CreatePencil {

public static void main (String args[]){

Pencil p1 = new Pencil();

p1.price = 0.5f;

}

}

Pencil.java

CreatePencil.java

%> javac Pencil.java

%> javac CreatePencil.java

CreatePencil.java:4: price has private access in Pencil

p1.price = 0.5f;

^

More about field modifiers

 static

 only one copy of the static field exists, shared by
all objects of this class

 can be accessed directly in the class itself

 access from outside the class must be preceded
by the class name as follows

System.out.println(Pencil.nextID);

or via an object belonging to the class

 from outside the class, non-static fields must be
accessed through an object reference

public class CreatePencil {

public static void main (String args[]){

Pencil p1 = new Pencil();

Pencil.nextID++;

System.out.println(p1.nextID);

//Result?

Pencil p2 = new Pencil();

Pencil.nextID++;

System.out.println(p2.nextID);

//Result?

System.out.println(p1.nextID);

//Result?

}
}

1

still 2!

2

Note: this code is only for the purpose of showing the usage of static
fields. It has POOR design!

More about field modifiers

(3)

 final

 once initialized, the value cannot be

changed

 often be used to define named

constants

 static final fields must be initialized when

the class is initialized

 non-static final fields must be initialized

when an object of the class is

constructed

Fields –Initialization

 Field initialization
 not necessary to be constants, as long as

with the right type

 If no initialization, then a default initial
value is assigned depending on its type

Type Initial Value

boolean false

char ‘\u0000’

byte, short, int, long 0

float +0.0f

double +0.0

object reference null

Methods – Declaration

 Method declaration: two parts
1. method header

 consists of modifiers (optional), return type, method
name, parameter list and a throws clause (optional)

 types of modifiers

 access control modifiers

 abstract

 the method body is empty. E.g.
abstract void sampleMethod();

 static

 represent the whole class, no a specific object

 can only access static fields and other static methods of the
same class

 final

 cannot be overridden in subclasses

2. method body

Methods – Invocation

 Method invocations

 invoked as operations on objects/classes using the

dot (.) operator

reference.method(arguments)

 static method:

 Outside of the class: “reference” can either be the class

name or an object reference belonging to the class

 Inside the class: “reference” can be ommitted

 non-static method:

 “reference” must be an object reference

Method - Overloading

 A class can have more than one method with the

same name as long as they have different

parameter list.

public class Pencil {

. . .

public void setPrice (float newPrice) {
price = newPrice;

}

public void setPrice (Pencil p) {
price = p.getPrice(); }

}

 How does the compiler know which method you’re

invoking? — compares the number and type of the

parameters and uses the matched one

Methods – Parameter Values

 Parameters are always passed by value.

public void method1 (int a) {

a = 6;

}

public void method2 () {

int b = 3;

method1(b); // now b = ?

// b = 3

}

 When the parameter is an object reference, it is the

object reference, not the object itself, getting

passed.

 Haven’t you said it’s past by value, not reference ?

class PassRef{

public static void main(String[] args) {

Pencil plainPencil = new Pencil("PLAIN");

System.out.println("original color: " +

plainPencil.color);

paintRed(plainPencil);

System.out.println("new color: " +

plainPencil.color);

}

public static void paintRed(Pencil p) {

p.color = "RED";

p = null;

}

}

another example: (parameter is an object reference)

plainPencil

plainPencil

plainPencil p

plainPencil p

color: PLAIN

- If you change any field of the object which the parameter refers to, the object is changed

for every variable which holds a reference to this object

color: PLAIN

color: RED

color: RED NULL

p

- You can change which object a parameter refers to inside a method without affecting the

original reference which is passed

- What is passed is the object reference, and it’s passed in the manner of “PASSING BY

VALUE”!

The Main Method - Concept

 main method

 the system locates and runs the main method for

a class when you run a program

 other methods get execution when called by

the main method explicitly or implicitly

 must be public, static and void

The Main Method - Getting
Input from the Command Line
 When running a program through the java command, you

can provide a list of strings as the real arguments for the main

method. In the main method, you can use args[index] to

fetch the corresponding argument

class Greetings {
public static void main (String args[]){
String name1 = args[0];
String name2 = args[1];
System.out.println("Hello " + name1 + “&“ +name2);

}
}

➢ java Greetings Jacky Mary

Hello Jacky & Mary

 Note: What you get are strings! You have to convert them into

other types when needed.

Modifiers of the classes
 A class can also has modifiers

 public

 publicly accessible

 without this modifier, a class is only accessible within its own
package

 abstract

 no objects of abstract classes can be created

 all of its abstract methods must be implemented by its subclass;
otherwise that subclass must be declared abstract also

 final

 can not be subclassed

 Normally, a file can contain multiple classes, but only one
public one. The file name and the public class name
should be the same

