
Lecture 1:

Object Oriented

Programming

Muhammad Hafeez Javed

www.rmhjaved.com

http://www.rmhjaved.com/

Procedural vs. Object-Oriented

Programming

 The unit in procedural programming is function, and

unit in object-oriented programming is class

 Procedural programming concentrates on creating

functions, while object-oriented programming starts

from isolating the classes, and then look for the

methods inside them.

 Procedural programming separates the data of the

program from the operations that manipulate the

data, while object-oriented programming focus on

both of them

figure1: procedural figure2: object-oriented

Concept of Class and

Object

 “Class” refers to a blueprint. It

defines the variables and methods

the objects support

 “Object” is an instance of a class.

Each object has a class which

defines its data and behavior

Class Members

 A class can have three kinds of members:

 fields: data variables which determine the

status of the class or an object

 methods: executable code of the class built

from statements. It allows us to

manipulate/change the status of an object or

access the value of the data member

 nested classes and nested interfaces

Sample class

class Pencil {

public String color = “red”;

public int length;

public float diameter;

public static long nextID = 0;

public void setColor (String newColor) {

color = newColor;

}

}

Fields – Declaration

 Field Declaration

 a type name followed by the field name, and

optionally an initialization clause

 primitive data type vs. Object reference

 boolean, char, byte, short, int, long, float, double

More about field modifiers

 Access control modifiers

 private: private members are accessible only in
the class itself

 package: package members are accessible in
classes in the same package and the class itself

 protected: protected members are accessible
in classes in the same package, in subclasses of
the class, and in the class itself

 public: public members are accessible
anywhere the class is accessible

public class Pencil {

public String color = “red”;

public int length;

public float diameter;

private float price;

public static long nextID = 0;

public void setPrice (float newPrice) {

price = newPrice;

}

}

public class CreatePencil {

public static void main (String args[]){

Pencil p1 = new Pencil();

p1.price = 0.5f;

}

}

Pencil.java

CreatePencil.java

%> javac Pencil.java

%> javac CreatePencil.java

CreatePencil.java:4: price has private access in Pencil

p1.price = 0.5f;

^

More about field modifiers

 static

 only one copy of the static field exists, shared by
all objects of this class

 can be accessed directly in the class itself

 access from outside the class must be preceded
by the class name as follows

System.out.println(Pencil.nextID);

or via an object belonging to the class

 from outside the class, non-static fields must be
accessed through an object reference

public class CreatePencil {

public static void main (String args[]){

Pencil p1 = new Pencil();

Pencil.nextID++;

System.out.println(p1.nextID);

//Result?

Pencil p2 = new Pencil();

Pencil.nextID++;

System.out.println(p2.nextID);

//Result?

System.out.println(p1.nextID);

//Result?

}
}

1

still 2!

2

Note: this code is only for the purpose of showing the usage of static
fields. It has POOR design!

More about field modifiers

(3)

 final

 once initialized, the value cannot be

changed

 often be used to define named

constants

 static final fields must be initialized when

the class is initialized

 non-static final fields must be initialized

when an object of the class is

constructed

Fields –Initialization

 Field initialization
 not necessary to be constants, as long as

with the right type

 If no initialization, then a default initial
value is assigned depending on its type

Type Initial Value

boolean false

char ‘\u0000’

byte, short, int, long 0

float +0.0f

double +0.0

object reference null

Methods – Declaration

 Method declaration: two parts
1. method header

 consists of modifiers (optional), return type, method
name, parameter list and a throws clause (optional)

 types of modifiers

 access control modifiers

 abstract

 the method body is empty. E.g.
abstract void sampleMethod();

 static

 represent the whole class, no a specific object

 can only access static fields and other static methods of the
same class

 final

 cannot be overridden in subclasses

2. method body

Methods – Invocation

 Method invocations

 invoked as operations on objects/classes using the

dot (.) operator

reference.method(arguments)

 static method:

 Outside of the class: “reference” can either be the class

name or an object reference belonging to the class

 Inside the class: “reference” can be ommitted

 non-static method:

 “reference” must be an object reference

Method - Overloading

 A class can have more than one method with the

same name as long as they have different

parameter list.

public class Pencil {

. . .

public void setPrice (float newPrice) {
price = newPrice;

}

public void setPrice (Pencil p) {
price = p.getPrice(); }

}

 How does the compiler know which method you’re

invoking? — compares the number and type of the

parameters and uses the matched one

Methods – Parameter Values

 Parameters are always passed by value.

public void method1 (int a) {

a = 6;

}

public void method2 () {

int b = 3;

method1(b); // now b = ?

// b = 3

}

 When the parameter is an object reference, it is the

object reference, not the object itself, getting

passed.

 Haven’t you said it’s past by value, not reference ?

class PassRef{

public static void main(String[] args) {

Pencil plainPencil = new Pencil("PLAIN");

System.out.println("original color: " +

plainPencil.color);

paintRed(plainPencil);

System.out.println("new color: " +

plainPencil.color);

}

public static void paintRed(Pencil p) {

p.color = "RED";

p = null;

}

}

another example: (parameter is an object reference)

plainPencil

plainPencil

plainPencil p

plainPencil p

color: PLAIN

- If you change any field of the object which the parameter refers to, the object is changed

for every variable which holds a reference to this object

color: PLAIN

color: RED

color: RED NULL

p

- You can change which object a parameter refers to inside a method without affecting the

original reference which is passed

- What is passed is the object reference, and it’s passed in the manner of “PASSING BY

VALUE”!

The Main Method - Concept

 main method

 the system locates and runs the main method for

a class when you run a program

 other methods get execution when called by

the main method explicitly or implicitly

 must be public, static and void

The Main Method - Getting
Input from the Command Line
 When running a program through the java command, you

can provide a list of strings as the real arguments for the main

method. In the main method, you can use args[index] to

fetch the corresponding argument

class Greetings {
public static void main (String args[]){
String name1 = args[0];
String name2 = args[1];
System.out.println("Hello " + name1 + “&“ +name2);

}
}

➢ java Greetings Jacky Mary

Hello Jacky & Mary

 Note: What you get are strings! You have to convert them into

other types when needed.

Modifiers of the classes
 A class can also has modifiers

 public

 publicly accessible

 without this modifier, a class is only accessible within its own
package

 abstract

 no objects of abstract classes can be created

 all of its abstract methods must be implemented by its subclass;
otherwise that subclass must be declared abstract also

 final

 can not be subclassed

 Normally, a file can contain multiple classes, but only one
public one. The file name and the public class name
should be the same

